bond geometry (Å, °)

	0		
N(1)C(2)	1.434 (3)	N(1)—C(6)	1.391 (3)
N(1) - C(11)	1.465 (3)	C(2)-N(3)	1.351 (3)
C(2) - O(21)	1.229 (3)	N(3)—C(4)	1.334 (3)
C(4) - C(5)	1.368(3)	C(4)—N(9)	1.387 (3)
C(5)—C(6)	1.421 (3)	C(5)—N(7)	1.389 (3)
C(6)-O(61)	1.236(3)	N(7)—C(8)	1.319 (3)
N(7) - C(71)	1.468 (3)	C(8)N(9)	1.341 (3)
N(9)-C(91)	1.458 (3)		
C(2) - N(1) - C(6)	125.8(2)	C(2)-N(1)-C(11)	116.8 (2)
C(6) - N(1) - C(11)	117.3 (2)	N(1) - C(2) - N(3)	119.7 (2)
N(1) - C(2) - O(21)	117.1 (2)	N(3) - C(2) - O(21)	123.2 (2)
C(2) - N(3) - C(4)	114.6 (2)	N(3)-C(4)-C(5)	128.4 (2)
N(3) - C(4) - N(9)	125.3 (2)	C(5)-C(4)-N(9)	106.3 (2)
C(4) - C(5) - C(6)	120.2 (2)	C(4)-C(5)-N(7)	107.7 (2)
C(6) - C(5) - N(7)	132.0(2)	N(1) - C(6) - C(5)	111.3 (2)
N(1) - C(6) - O(61)	121.6(2)	C(5)-C(6)-O(61)	127.2 (2)
C(5) - N(7) - C(8)	107.9(2)	C(5)-N(7)-C(71)	127.2 (2
C(8) - N(7) - C(71)	124.9 (2)	N(7)-C(8)-N(9)	110.0 (2)
C(4) - N(9) - C(8)	108.2 (2)	C(4)-N(9)-C(91)	126.1 (2)
C(8)-N(9)-C(91)	125.7 (2)		
$D - H \cdots A$	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O(1W) = H \cdot \cdot \cdot N(3)$	2.05 (4)	2.896 (3)	174 (3)
$O(1W) - H \cdot \cdot \cdot O(61^{i})$	2.06(4)	2.918 (3)	173 (3)
C(8)—H···O(21 ⁱⁱ)	2.06 (4)	3.009 (3)	156 (3)
Symmetry codes:	(i) $1 - x, \frac{1}{2} + $	+ y, $\frac{1}{2} - z$; (ii) $x - 1$, $\frac{3}{2}$	$-y, \frac{1}{2}+z.$

Space group $P2_1/c$ was determined from systematic absences (0k0, k odd; h0l, l odd). Corrections for Lorentz-polarization effects were applied. The structure was solved by direct methods using MULTAN80 (Main et al., 1980) and refined by fullmatrix least-squares calculations. Non-H atoms were allowed to refine with anisotropic displacement parameters. H-atoms were allowed to refine with overall isotropic displacement parameters. Other computer programs used include SHELX76 (Sheldrick, 1976) and XANADU (Roberts & Sheldrick, 1975).

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support and Dr R. E. Lenkinski for providing the crystals of the title compound.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: BR1053). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Aoki, K., Ichikawa, T., Koinuma, Y. & Iitaka, Y. (1978). Acta Cryst. B34, 2333-2336.
- Craven, B. M. & Gartland, G. L. (1974). Acta Cryst. B30, 1191-1195
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Herbstein, F. H., Kaftory, M., Kapon, M. & Saenger, W. (1981). Z. Kristallogr. 154, 11-30.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Koo, C. H., Shin, S. H. & Oh, S. S. (1978). J. Korean Chem. Soc. 22, 86–94.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

- Table 2. Bond distances (Å), angles (°) and hydrogen- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
 - Martin, R., Lilley, T. H., Bailey, N. A., Falshaw, C. P., Haslam, E., Magnolato, D. & Begley, M. J. (1986). J. Chem. Soc. Chem. Commun. pp. 105-106.
 - Mercer, A. & Trotter, J. (1978). Acta Cryst. B34, 450-453.
 - Rasmussen, H. & Sletten, E. (1973). Acta Chem. Scand. 27, 2757-2768.
 - Roberts, P. J. & Sheldrick, G. M. (1975). XANADU, Program for Crystallographic Calculations. Univ. of Cambridge, England.
 - Shefter, E. (1968). J. Pharm. Sci. 57, 1163-1168.
 - Sheldrick, G. M. (1976). SHELX76. Progam for Crystal Structure Determination. Univ. of Cambridge, England.
 - Stewart, R. F., Davidson, E. R. & Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
 - Sutor, D. J. (1958a). Acta Cryst. 11, 83-87.
 - Sutor, D. J. (1958b). Acta Cryst. 11, 453-458.
 - Wiedenfeld, H. & Knoch, F. (1986). Arch. Pharm. 319, 654-659.

Acta Cryst. (1994). C50, 1305–1308

Fluorinated Barbituric Acid Derivatives

DARRYL D. DESMARTEAU AND WILLIAM T. PENNINGTON

Department of Chemistry, Clemson University, Clemson, South Carolina 29634-1905, USA

GIUSEPPE RESNATI

CNR, Centro di Studio delle Sostanze Organische Naturali, Dipartimento di Chimica del Politecnico, Piazza L. da Vinci 32, I-20133 Milan, Italy

(Received 19 May 1993; accepted 10 November 1993)

Abstract

The structures of 5,5-difluorobarbituric acid, C₄H₂- $F_2N_2O_3$ (1), and 5-fluoro-5-phenylbarbituric acid, C₁₀H₇FN₂O₃ (2), have been determined [barbituric acid is 2,4,6(1H,3H,5H)-pyrimidinetrione]. Both compounds have the expected keto structure. The C-C bonds in the heterocyclic ring [1.526 (8) Å for (1), 1.525 (6) and 1.537 (6) Å for (2)] are elongated relative to those of the parent compounds, consistent with the electron-withdrawing power of the F-atom substituent(s). There is extensive intermolecular hydrogen bonding in both compounds.

Comment

Selective fluorination of biologically active compounds often induces useful pharmacological proper-

1305

ties or enhances the therapeutic effectiveness of the product (Welch, 1987; Resnati, 1990a,b). Recently we synthesized several 5-fluorobarbituric acids (Resnati & DesMarteau, 1992). The presence of F may alter the acidity and hydrophilic/lipophilic nature of these compounds. A comparison of the mass spectrometric behavior of these fluorinated derivatives with that of their parent compounds has revealed major differences in the fragmentation process (DesMarteau, Resnati, Favretto & Traldi, 1992). The parent compounds yielded fragments consistent with cleavage of a ketoimidic bond. This ringopening process is similar to that which occurs in basic media to yield a β -keto acid derivative (Harvey, 1985). The fluorinated derivatives, however, gave fragments which originated from a structure resulting from the rupture of a C-C (F_2 C-CO) bond. This alternative cleavage was believed to be due to the electron-withdrawing power of the F atom. Structure determinations of 5,5-difluorobarbituric acid (1) and 5-fluoro-5-phenylbarbituric acid (2) were undertaken to support this conclusion (see Fig. 1).

The influence of the F atoms in (1) is evident by comparison to barbituric acid (Bolton, 1963). The C—C bonds in (1) are considerably longer than those in the parent compound [1.526 (8) Å versus 1.471 (7) and 1.490 (7) Å]. The C—C bonds in (2) [1.525 (6) and 1.537 (6) Å] are similar to those of (1), and are also considerably longer than those observed in the parent compound, 5-phenylbarbituric acid [1.363 (3) and 1.422 (3) Å (de Meester, Jovanovic, Chu & Biehl, 1986)]. However, the differences between this compound and compound (2) are due primarily to the fact that 5-phenylbarbituric acid was found to have an unusual enol structure, while (2) has the more typical keto structure.

Crystal packing in both compounds is dominated by extensive intermolecular hydrogen bonding. In (1), strong interactions between molecules related by a 2_1 screw operation parallel to the *a* axis [N(3)— H(3)···O(2)] and between molecules related by a 2_1 screw operation parallel to the *b* axis [N(1)— H(1)···O(6)] result in a three-dimensional network of hydrogen bonds. In (2), molecules related by a 2_1 screw operation parallel to the *a* axis are joined through two interactions [N(1)—H(1)···O(4) and O(6)···H(3)—N(3)] to form an infinite chain structure. Geometric details of these interactions are given in Table 2.

Fig. 1. Views showing the labeling of non-H atoms. Displacement ellipsoids are shown at 50% probability levels. (a) Compound (1); (b) compound (2).

Experimental

Compounds (1) and (2) were recrystallized from methyl cyanide/2-propanol (Resnati & DesMarteau, 1992).

Compound (1)

Crystal data

$C_4H_2F_2N_2O_3$	Mo $K\alpha$ radiation
$M_r = 164.08$	$\lambda = 0.71073 \text{ Å}$
Orthorhombic	Cell parameters from 44
P212121	reflections
a = 6.603 (4) Å	$\theta = 8.6 - 16.2^{\circ}$
b = 7.718 (4) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 11.260 (6) Å	T = 294 (1) K

2.2			_			
$V = 573.8 (5) Å^3$	Parallelepiped	Table 1	L. Fractional	atomic co	ordinates and i	sotropic or
Z = 4	$0.35 \times 0.25 \times 0.24$ mm	equivalent isotropic displacement parameters (A^2) for				
$D_x = 1.90 \text{ Mg m}$	Coloness		со	mpounds (1) and (2)	
Data collection		U_{is}	o for H atoms;	$U_{\rm eq} = (1/3)\Sigma$	$\sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j$ fo	r others.
Nicolet $R3m/V$ diffractome-	$\theta_{\rm max} = 24.0^{\circ}$		x	у	Z	$U_{\rm iso}/U_{\rm eq}$
ter	$h = -7 \rightarrow 0$	(1)				0.059.(1)
$\omega/2\theta$ scans	$k = -8 \rightarrow 0$	F(1)	0.0504 (7)	0.6731 (6	0.7811(3)	0.058(1)
Absorption correction:	$l = 0 \rightarrow 12$	O(2)	0.1883 (6)	0.2414 (5	0.5068(4)	0.034 (1)
empirical	3 standard reflections	O(4)	-0.1196 (7)	0.7653 (6) 0.5480 (4)	0.052 (2)
$T_{\rm min} = 0.93, \ T_{\rm max} = 1.00$	monitored every 97	O(6)	0.4881 (10)	0.6347 (6	0.7472(5)	0.058 (2)
557 measured reflections	reflections	N(1) N(3)	0.3309(7)	0.4350 (0	0.0307(4) 0.5326(4)	0.033(1) 0.029(1)
557 independent reflections	intensity variation: $\pm 2\%$	C(2)	0.1844 (9)	0.3823 (6	0.5538 (5)	0.025 (2)
520 observed reflections		C(4)	0.0084 (10)	0.6613 (7	0.5781 (5)	0.032 (2)
$[l>3\sigma(l)]$		C(5)	0.1549 (9)	0.7023 (7	(0.6790(5))	0.032(2) 0.033(2)
		C(6) H(1)	0.3449 (10)	0.3590	0.6367	0.078 (20)
Refinement		H(1) H(3)	-0.0680	0.4661	0.4802	0.078 (20)
Refinement on F	Extinction correction:					
R = 0.0536	Larson (1970)	(2) E(1)	0 1264 (2)	-0.0261 (3	0 1016(1)	0.036(1)
wR = 0.0736	Extinction coefficient:	O(2)	0.1341 (2)	0.4508 (4	-0.0782(2)	0.042(1)
S = 2.96	0.015 (4)	O(4)	-0.0646 (2)	0.1099 (4	4) 0.0589 (2)	0.041 (1)
520 reflections	Atomic scattering factors	O(6)	0.3222 (2)	0.1124 (3	0.0655(2)	0.035(1)
102 parameters	from Cromer & Waber	N(1) N(3)	0.2263(3) 0.0327(3)	0.2817 (2	-0.0053(2) -0.0063(2)	0.031(1) 0.033(1)
$w = 1/[\sigma^2(F) + 0.00025F^2]$	(1974)	C(2)	0.1315 (3)	0.3489 (5	5) -0.0333 (2)	0.031(1)
$(\Delta/\sigma)_{\rm max} = 0.0008$		C(4)	0.0234 (3)	0.1746 (5	5) 0.0450 (2)	0.030(1)
$\Delta \rho_{\rm max} = 0.273 \ {\rm e} \ {\rm \AA}^{-3}$		C(5)	0.1268(3) 0.2349(3)	0.1380 (4	0.0884(2) 0.0486(2)	0.028(1) 0.026(1)
$\Delta \rho_{\rm min} = -0.304 \ {\rm e} \ {\rm \AA}^{-3}$		C(0) C(7)	0.1267 (3)	0.2259 (5	5) 0.1591 (2)	0.031(1)
\mathbf{C}		C(8)	0.0461 (4)	0.3377 (6	6) 0.1768 (3)	0.043 (2)
Compound (2)		C(9)	0.0468 (5)	0.4075 (7	7) $0.2437(3)$ 7) $0.2918(3)$	0.061 (2)
Crystal data		C(10) C(11)	0.2087 (5)	0.2638 (8	0.2734(3)	0.061 (2)
$C_{10}H_7FN_2O_3$	Mo $K\alpha$ radiation	C(12)	0.2087 (4)	0.1912 (0	5) 0.2078 (3)	0.044 (2)
$M_r = 222.18$	$\lambda = 0.71073 \text{ Å}$	H(1)	0.2839 (36)	0.3105 (5	-0.0234(22)	0.028 (13)
Orthorhombic	Cell parameters from 49	H(3) H(8)	-0.0260(52) -0.0087(41)	0.3684 ((53) = 0.0288 (33) (52) (52) (52) (52) (52) (52) (52) (52	0.057 (15)
Pbca	reflections	H(9)	-0.0081 (48)	0.4866 (71) 0.2550 (30)	0.076 (19)
a = 12.072 (3) Å	$\theta = 12.1 - 22.9^{\circ}$	H(10)	0.1193 (51)	0.4155 (80) 0.3371 (40)	0.108 (25)
b = 8.349 (2) Å	$\mu = 0.12 \text{ mm}^{-1}$	H(11)	0.2612 (42)	0.2397 (0	61) 0.3075 (27) 66) 0.1953 (30)	0.061 (16)
c = 18.819 (7) Å	T = 294 (1) K	П(12)	0.2042 (47)	0.1000 (,	0.077 (127
V = 1896.7 (7) Å ³	Parallelepiped					۹
Z = 8	$0.32 \times 0.31 \times 0.19 \text{ mm}$	Та	ble 2. Select	ed geometr	ric parameters (A,°) for
$D_x = 1.55 \text{ Mg m}^{-3}$	Colorless		C	ompounds ((1) <i>and</i> (2)	
		(1)				
Data collection		F(1)—C	(5)	1.359 (7)	F(2)—C(5)	1.324 (6)
Nicolet R3m/V diffractome-	$\theta_{\rm max} = 24.0^{\circ}$	0(2)-0	2(2)	1.209 (6)	O(4) - C(4)	1.213 (8)
ter	$h = -14 \rightarrow 0$	0(6)—C	2(6) 2(6)	1.205 (9)	N(1) - C(2) N(3) - C(2)	1.377 (7)
$\omega/2\theta$ scans	$k = 0 \rightarrow 10$	N(3)-C	C(4)	1.376 (7)	C(4)—C(5)	1.526 (8)
Absorption correction:	$l = 0 \rightarrow 22$	C(5)—C	C(6)	1.526 (8)		
empirical	3 standard reflections	C(2)—N	N(1)C(6)	127.7 (5)	C(2)—N(3)—C(4)	126.9 (5)
$T_{\min} = 0.84, \ T_{\max} = 1.00$	monitored every 97	0(2)0	C(2) - N(1)	122.1 (5)	O(2) - C(2) - N(3) O(4) - C(4) - N(3)	121.2 (5)
1740 measured reflections	reflections	$N(1) \rightarrow 0$	$\Gamma(2) = N(3)$ $\Gamma(4) = \Gamma(5)$	120.8 (5)	N(3) - C(4) - C(5)	114.0 (5)
1740 independent reflections	intensity variation: $\pm 2\%$	F(1)—C	C(5) - F(2)	106.4 (5)	F(1)-C(5)-C(4)	105.9 (5)
919 observed reflections		F(2)C	C(5)—C(4)	111.2 (5)	F(1) - C(5) - C(6)	105.5 (4)
$[I > 3\sigma(I)]$		F(2)C	C(5) = C(6)	110.1 (5)	C(4) = C(5) = C(6) O(6) = C(6) = C(5)	121.5 (5)
Pafinamant		N(1)	C(6) - C(5)	114.2 (5)		
		O(2)· · ·	N(3 ⁱ)	2.937 (7)	$O(6) \cdot \cdot \cdot N(1^{ii})$	2.948 (7)
Refinement on F	$(\Delta / \sigma)_{\text{max}} = 0.0000$	Svn	nmetry codes: (i	i) $\frac{1}{3} + x, \frac{1}{3} - y$	y, 1-z; (ii) $1-x,$	$\frac{1}{3} + y, \frac{3}{3} - z.$
K = 0.0523	$\Delta \rho_{\text{max}} = 0.231 \text{ e A}$	(2)		2 ' 2 '	$\Gamma(5) - \Gamma(7)$	1.519 (6)
WK = 0.0040	$\Delta \rho_{\rm min} = -0.500 {\rm e} {\rm A}$	$F(1) \rightarrow 0$	C(5)	1.392 (4)	O(2)—C(2)	1.199 (5)
S = 1.03	Atomic scattering factors	O(4)(C(4)	1.221 (5)	O(6)—C(6)	1.217 (5)
172 parameters	from Cromer & Waber	N(1)	C(2)	1.380 (6)	N(1) - C(6) N(3) - C(2)	1.362 (6)
1/5 parameters $w = 1/[\sigma^2(E) \pm 0.00025E^2]$	(1974)	N(3)	C(4) C(5)	1.505 (6)	C(5)-C(6)	1.537 (6)
$w = 1/[0 (1) + 0.000251^{\circ}]$	(12/7)	-(.)	. ,	· - /		

C(2) - N(1) - C(6)	128.0 (4)	C(2) - N(3) - C(4)	125.7 (4)
O(2) - C(2) - N(1)	122.3 (4)	O(2) - C(2) - N(3)	122.5 (4)
N(1) - C(2) - N(3)	115.2 (4)	O(4)—C(4)—N(3)	122.3 (4)
O(4) - C(4) - C(5)	120.6 (4)	N(3)-C(4)-C(5)	117.0 (3)
F(1) - C(5) - C(4)	106.8 (3)	F(1)—C(5)—C(6)	106.4 (3)
C(4)—C(5)—C(6)	113.3 (3)	F(1)—C(5)—C(7)	108.7 (3)
C(4)-C(5)-C(7)	111.9 (3)	C(6)—C(5)—C(7)	109.5 (3)
O(6)-C(6)-N(1)	122.8 (4)	O(6)—C(6)—C(5)	121.7 (4)
N(1)-C(6)-C(5)	115.5 (3)		
D—H···A	$D \cdots H$	$D \cdots A$	D — $H \cdot \cdot \cdot A$
$O(4^i) - H(1) \cdot \cdot \cdot N(1^i)$	2.06 (5)	2.867 (5)	174(1)
$O(6^{ii})$ -H(3)···N(3 ⁱⁱ)	2.00 (5)	2.899 (5)	162(1)

Symmetry codes: (i) $x + \frac{1}{2}, \frac{1}{2} - y, -z$; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, -z$.

The structures were solved by direct methods and refined by full-matrix least squares. The non-H atoms were refined anisotropically; H atoms were located by standard techniques and were refined isotropically [for (2)], or were placed in optimized positions (C—H = 0.96 Å) as a riding model contribution to the structure-factor calculations [for (1); group isotropic displacement parameter = 0.08 (2) Å²]. Corrections were applied for Lorentz and polarization effects, and real and imaginary anomalous dispersion (Cromer, 1974). Structure solution, refinement and the calculation of derived results were performed using *SHELXTL* (Sheldrick, 1986).

Lists of structure factors and anisotropic displacement parameters for (1) and (2), complete geometry for (2) and packing diagrams for (1) and (2) have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71818 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1077]

References

Bolton, W. (1963). Acta Cryst. 16, 166-173.

- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- DesMarteau, D. D., Resnati, G., Favretto, D. & Traldi, P. (1992). Org. Mass Spectrom. 27, 204–210.
- Harvey, S. C. (1985). Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th edition, edited by A. G. Gilman, L. S. Goodman, T. W. Rall & F. Murad, ch. 17, pp. 339–371. New York: McMillan.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed. Munksgaard: Copenhagen.
- Meester, P. de, Jovanovic, M. V., Chu, S. S. C. & Biehl, E. R. (1986). J. Heterocycl. Chem. 23, 337-341.
- Resnati, G. (1990a). Farmaco, 45, 1043-1044.
- Resnati, G. (1990b). Farmaco, 45, 1137-1139.
- Resnati, G. & DesMarteau, D. D. (1992). J. Org. Chem. 57, 4281-4284.
- Sheldrick, G. M. (1986). SHELXTL User's Manual. Nicolet XRD Corporation, Madison, Wisconsin, USA.
- Welch, J. T. (1987). Tetrahedron, 43, 3123-3197.

Acta Cryst. (1994). C50, 1308–1312

Substituted Diphenyl Oxalates

CLIFFORD GEORGE*

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington DC 20375, USA

PAUL M. LAHTI,* DAVID A. MODARELLI AND Ahmet Inceli

Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA

(Received 19 April 1993; accepted 2 November 1993)

Abstract

The ethanedioic acid (oxalic acid) diphenyl ester derivative with bis(2,6-*tert*-butyl) substitution, bis-(2,6-di-*tert*-butyl-4-methoxyphenyl) ethanedioate, $C_{32}H_{46}O_6$ (3), adopts an *s*-*trans* oxalate conformation due to steric constraints; such derivatives constitute conformationally well defined molecular structural units. Diphenyl ethanedioate, $C_{14}H_{10}O_4$ (1), has approximate *s*-*cis* geometry and diphenyl ethanedioate with *tert*-butylation on only one ring, 1-(2,4,6-tris-tert-butylphenyl) 2-phenyl ethanedioate, $C_{26}H_{34}O_4$ (2), has a *gauche* conformation.

Comment

During studies of radical pairs photochemically generated in neat solid diphenyl ethanedioates (more commonly called oxalates, a usage we retain in this work), some of us (Modarelli, George & Lahti, 1991) wished to study the crystallography of these compounds as a function of different substitution patterns. We found that triplet radical-pair electronspin-resonance (ESR) spectra could be most readily detected in diphenyl oxalates with 2,6-di-tertbutylated phenyl rings. More extensive ESR studies of such radical pairs in oriented crystalline arrays required definitive structural information. In this report, we describe the crystal structures and variation in solid-state molecular conformation of the following substituted oxalates: diphenyl oxalate (1), phenyl 2,4,6-tris-tert-butylphenyl oxalate (2) and bis(2,6-di-tert-butyl-4-methoxyphenyl) oxalate (3).

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Crystallographica Section C ISSN 0108-2701 ©1994